С. случайным образом выбирают одно из решений неравенства 1≤|x-3|≤5. найдите вероятность того, что оно является решением неравенства: а) |x|≤2; б) |x-6|≤2; в) |x|≤1; г) 1≤|x-6|≤2
Исходное неравенство распадается на совокупность систем:
а) неравенство эквивалентно:
Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .
о т в е т :
б) неравенство эквивалентно:
Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .
о т в е т :
в) неравенство эквивалентно:
Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет
о т в е т :
г) неравенство распадается на совокупность систем:
Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет
а) неравенство эквивалентно:
Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .
о т в е т :
б) неравенство эквивалентно:
Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .
о т в е т :
в) неравенство эквивалентно:
Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет
о т в е т :
г) неравенство распадается на совокупность систем:
Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет
о т в е т :