а) возведем в квадрат обе части уравнения.
1+х=1-2х+х²; х²-3х=0; х*(х-3)=0; х=0; х=3;
Проверка. х=0; √(0+1)=1-0;1=1⇒х=0- корень исходного уравнения.
х=3; √(3+1)=1-3; т.к. 2≠-2, х=3- не является корнем исходного уравнения.
ответ х=0
б) ОДЗ
х≥0
х≥-1/2
х≥-3/4
т.о., х≥0
перенесем второй корень вправо. получим после возведения в квадрат обеих частей.
2х+1=4х+3+1+2*√(4х+3)
-2х-3=2*√(4х+3)
-х-1.5=√(4х+3); возведем в квадрат. х²+3х+2.25=4х+3; х²-х-0.75=0; х=0.5±√(0.25+0.75)=0.5±1; х=1.5;
х=-0.5 меньше нуля, не входит в ОДЗ;
Провека. х=1.5
√(3+1)-√(6+3)=1, 2-3=1, т.к. 1≠-1, то уравнение корней не имеет.
а) возведем в квадрат обе части уравнения.
1+х=1-2х+х²; х²-3х=0; х*(х-3)=0; х=0; х=3;
Проверка. х=0; √(0+1)=1-0;1=1⇒х=0- корень исходного уравнения.
х=3; √(3+1)=1-3; т.к. 2≠-2, х=3- не является корнем исходного уравнения.
ответ х=0
б) ОДЗ
х≥0
х≥-1/2
х≥-3/4
т.о., х≥0
перенесем второй корень вправо. получим после возведения в квадрат обеих частей.
2х+1=4х+3+1+2*√(4х+3)
-2х-3=2*√(4х+3)
-х-1.5=√(4х+3); возведем в квадрат. х²+3х+2.25=4х+3; х²-х-0.75=0; х=0.5±√(0.25+0.75)=0.5±1; х=1.5;
х=-0.5 меньше нуля, не входит в ОДЗ;
Провека. х=1.5
√(3+1)-√(6+3)=1, 2-3=1, т.к. 1≠-1, то уравнение корней не имеет.