З системи рівнянь:
25x^2 - 4y^2 = 21 (1)
5x - 2y = 7 (2)
Можна розв'язати рівняння (2) відносно x:
5x = 2y + 7
x = (2y + 7) / 5
Підставимо це значення x в рівняння (1) і спростимо його:
25((2y + 7) / 5)^2 - 4y^2 = 21
4y^2 + 98y + 184 = 0
Тепер ми можемо розв'язати це квадратне рівняння відносно y. Використовуємо квадратне рівняння:
y = [-b ± √(b^2 - 4ac)] / 2a
де a = 4, b = 98, і c = 184. Підставляємо ці значення:
y = [-98 ± √(98^2 - 4 · 4 · 184)] / 8
y = [-98 ± √(9604)] / 8
y1 = (-98 + 98) / 8 = -12.25
y2 = (-98 - 98) / 8 = -24.75
Тепер підставляємо знайдені значення y в рівняння (2), щоб знайти відповідні значення x:
x1 = (2y1 + 7) / 5 = (2 · (-12.25) + 7) / 5 = -1.45
x2 = (2y2 + 7) / 5 = (2 · (-24.75) + 7) / 5 = -5.65
Отже, розв'язками системи рівнянь є пари чисел (-1.45, -12.25) і (-5.65, -24.75).
З системи рівнянь:
25x^2 - 4y^2 = 21 (1)
5x - 2y = 7 (2)
Можна розв'язати рівняння (2) відносно x:
5x = 2y + 7
x = (2y + 7) / 5
Підставимо це значення x в рівняння (1) і спростимо його:
25((2y + 7) / 5)^2 - 4y^2 = 21
4y^2 + 98y + 184 = 0
Тепер ми можемо розв'язати це квадратне рівняння відносно y. Використовуємо квадратне рівняння:
y = [-b ± √(b^2 - 4ac)] / 2a
де a = 4, b = 98, і c = 184. Підставляємо ці значення:
y = [-98 ± √(98^2 - 4 · 4 · 184)] / 8
y = [-98 ± √(9604)] / 8
y1 = (-98 + 98) / 8 = -12.25
y2 = (-98 - 98) / 8 = -24.75
Тепер підставляємо знайдені значення y в рівняння (2), щоб знайти відповідні значення x:
x1 = (2y1 + 7) / 5 = (2 · (-12.25) + 7) / 5 = -1.45
x2 = (2y2 + 7) / 5 = (2 · (-24.75) + 7) / 5 = -5.65
Отже, розв'язками системи рівнянь є пари чисел (-1.45, -12.25) і (-5.65, -24.75).