Резервуар наполняется водой двумя трубами за 12 час(-ов, -а). Первая труба может наполнить резервуар на 10 час(-ов, -а) быстрее, чем вторая. За сколько часов вторая труба может наполнить резервуар?​

diankapermyakoowxdr6 diankapermyakoowxdr6    1   13.02.2021 13:30    1

Ответы
ivanova48 ivanova48  15.03.2021 13:31

ответ:  30 часов.

Объяснение:

Производительность двух труб равна 1/12 части резервуара за час

Пусть время наполнения первой  трубы равно  х часов.

Тогда время наполнения 2 трубы равно  х +10 часов. соответственно их производительности равны  1/х  и 1/х+10 часть/ час.

Совместная производительность равна

1/х + 1/(х +10) = 1/12;

12(х+10) + 12х = х(х+10);

12х +120 +12х =х²+10х;

х² - 24х+10х -120 =0;

х² -14х-120=0;

х1= 20;  х2= -6 - не соответствует условию

х=20 часов заполняет 1 труба.

х+10=20+10=30 часов - время заполнения 2-й трубой.

Проверим:

1/20 + 1/30 =   (3+2)/60 = 5/60 = 1/12.  Всё верно!

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра