Решите здания №1 -1-я цифра трехзначного числа=9.эту цифру переставили на последнее место и получившееся трёхзначное число вычли из данного.в результате получили 576.найдите данное число №2-решите уравнения а)(2х-1)(3х-1)(4х-1)=0 б)(2х+1)(3х²+1)(0004х+1)=0
Пусть трехзначное число выглядит как 9xy, где x - цифра, y - цифра.
После перестановки имеем число xy9.
Исходное число, обозначим A, очевидно равно
A = 900 + 90*x + y.
После перестановки число обозначим B, оно равно
B = x*100 + y*10 + 9.
Имеем:
A-B = (900 + 90*x + y) - (x*100 + y*10 + 9) = 891-90*x - 9*y.
Известно, что
A-B = 576.
Имеем:
576 = 891-90*x - 9*y
Или
90*x + 9*y = 315.
Поскольку x и y - цифры, то есть от 0 до 9 включительно, то в числе 315 последний разряд никак не может прийти от первого слагаемого (90*x). Можно перебрать все 10 вариантов значения цифры x - не получится, чтобы 90*x
равнялось числу, оканчивавшемуся на цифру, отличную от нуля.
Следовательно, в числе 315 последний разряд получен только от второго слагаемого (9*y).
Единственной такой цифрой, которая даст при перемножении на 9 результат, оканчивающийся на 5, это число 5.
Тогда
y=5.
90*x + 9*5 = 315.
x = 3.
ответ:
A = 935
2)а) х = 1/2. х=1/3, х= 1/4
б) х=-1/2, х =-250