Решите уравнения :
1) sinx × cosx=sin35°
2) arcsin 2x = arccos x

tarlaejan12 tarlaejan12    1   14.07.2019 12:07    2

Ответы
ZhEnYa9911 ZhEnYa9911  31.07.2020 13:31

Объяснение:

1) 0,5·sin2x = sin35° ⇔ sin2x = 2·sin35°  (1) ;  так как y = sinx

 возрастает в  первой четверти , то sin35° > sin30° = 0,5  ⇒

2·sin35° > 1 ⇒  уравнение (1) не имеет решений

2) arcsin 2x = arccos x (2) ,  arccos x ≥ 0 для всех х ⇒ arcsin 2x ≥ 0

⇒ х ≥ 0  ; так как из области определения у = arcsin2x  следует

, что х ≤ 0,5 , то уравнение (2) имеет решение только ,    

  если x ∈ [ 0 ; 0,5]  , на этом  отрезке левая часть уравнения

меняется от 0 до π/2 ,  а правая  от π/3  до π/2  ⇒    

уравнение ( 2) имеет решение , если множество

значений обеих частей не выходит за пределы [π/3 ; π/2]   , но

на этом отрезке функция y = sinx - возрастает ⇒ уравнение ( 1 )

равносильно на [ 0 ; 0,5]  следующему :  

 sin(arcsin2x) = sin(arccosx)

2x = \sqrt{1-x^{2} }  ⇔ 4x² = 1 - x² ⇔ x² = 1/5 ⇒  

x = \frac{\sqrt{5} }{5}    ( так как х ≥ 0)

функции , стоящие в левой и правой частях уравнения имеют

разную монотонность , поэтому сразу ясно , что уравнение  

имеет не более одного корня , в этом случае его достаточно

"  угадать "  , но угадать не получилось , пришлось брать

синусы  от обеих частей

f(x) = g(x) ⇔ h(f(x)) = h(g(x) ) , если h(x) -  монотонна и значения

f и g  входят в область определения функции h  , поэтому

и пришлось доказывать , что значения  f   и g  не выходят

за пределы первой четверти , а там  синус возрастает и

поэтому законно брать синусы от обеих частей

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра