x1=6, х2=-2
Объяснение:
x2-4x-12=0
D=b²-4ac
a=1 b=-4 c=-12
D = (-4)2 - 4 × 1 × (-12) = 16 + 48 = 64
x1 = (-b + √D)/2a = (4 + √64)/2 × 1 = (4 + 8)/2 = 12/2 = 6
x2 = (-b - √D)/2a = (4 - √64)/2 × 1 = (4 - 8)/2 = -4/2 = -2
Смотри решение.
Данное уравнение легко решается через теорему Виетта после переноса 12 влево со знаком "-";
Теория:
По теореме Виетта:
Сумма корней уравнения равняется 2 коэффициенту данного уравнения, взятому с противоположным знаком
Произведение корней уравнения равняется 3 коэффициенту данного уравнения.
Теперь переходим от теории, к решению самого уравнения:
x1=6, х2=-2
Объяснение:
x2-4x-12=0
D=b²-4ac
a=1 b=-4 c=-12
D = (-4)2 - 4 × 1 × (-12) = 16 + 48 = 64
x1 = (-b + √D)/2a = (4 + √64)/2 × 1 = (4 + 8)/2 = 12/2 = 6
x2 = (-b - √D)/2a = (4 - √64)/2 × 1 = (4 - 8)/2 = -4/2 = -2
Смотри решение.
Объяснение:
Данное уравнение легко решается через теорему Виетта после переноса 12 влево со знаком "-";
Теория:
По теореме Виетта:
Сумма корней уравнения равняется 2 коэффициенту данного уравнения, взятому с противоположным знаком
Произведение корней уравнения равняется 3 коэффициенту данного уравнения.
Теперь переходим от теории, к решению самого уравнения: