Решите уравнение : синус 2х-12*(синус х-косинус х)+12=0

ul8a ul8a    1   04.06.2019 06:30    1

Ответы
aidana013 aidana013  05.07.2020 10:17
Sin2x - 12(sinx - cosx) + 12 =  0

Пусть sinx - cosx = t,
преобразуем для sin2x
(sinx - cosx)^2 = t^2
1 - sin2x = t^2
sin2x = 1 - t^2

Следовательно, у нас выходит новое квадратное  уравнение относительно замены
Отрешаем его:
1 - t^2 - 12t + 12 = 0
- t^2 - 12t + 13 = 0  /: (-1)
t^2 + 12t - 13 = 0
D = 144 + 52 = 14^2
t1 = ( - 12 + 14)/2 = 1
t2 = ( - 12 - 14)/2 = - 13

Выполним обратную замену
1) 
sinx - cosx = - 13
нет решений (пустое множ-во)

2)
sinx - cosx =  1
Возведём обе части уравнения в квадрат
Первые два слагаемых в сумме дают единицу
1-2sinx*cosx=1
2sinx*cosx=0
sinx*cosx=0
Теперь, произведение равно 0, когда один из множителей равен 0

Если sin x = 0, то из уравнения получаем cos x = -1
Следовательно, x = pi + 2 pi * к

Если cos x = 0, то из уравнение получаем sin x = 1
Следовательно, x = pi/2 + 2 pi * к

Общее решение есть объединение этих двух решений
х= pi +2 pi*k и х= pi/2 +*2pi*k 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра