Решите уравнение : 6sin^2x + 7 cos x = 7

omanivchuk omanivchuk    1   02.09.2019 17:40    2

Ответы
Yar4ik03 Yar4ik03  06.10.2020 12:50
6sin²x + 7cosx = 7
6(1 - cos²x) + 7cosx = 7
6 - 6cos²x + 7cosx - 7 = 0
-6cos²x + 7cosx - 1 = 0
6cos²x - 7cosx + 1 = 0
cosx = t
6t² - 7t + 1 = 0
√D = 5
t₁ = (7 - 5)/12  = 1/6
t₂ = (7 + 5)/12 = 1

cosx = 1/6
cosx = 1

x = arccos(1/6) + 2πn, где n ∈ Z
x = -arccos(1/6) + 2πn, где n ∈ Z
x = 2πn, где n ∈ Z

На отрезке [-3π; π] x равен: 0; -2π; -arccos(1/6) - 2π; arccos(1/6) - 2π; -arccos(1/6); arccos(1/6)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра