решите уравнение!!

3*9^x+5*3^x-1=2*9^x+4*3^x+5

fedotovanatolij fedotovanatolij    1   24.06.2021 22:57    0

Ответы
SofiLand854 SofiLand854  24.07.2021 23:44

log_3 (2)

Объяснение:

3*9^x+5*3^x-1=2*9^x+4*3^x+5\\(3*9^x-2*9^x)+(5*3^x-4*3^x)-1-5=0\\9^x(3-2)+3^x(5-4)-6=0\\9^x+3^x-6=0\\(3^2)^x+3^x-6=0\\(3^x)^2+3^x-6=0\\3^x=t, \;t0\\t^2+t-6=0

По теореме Виета

\begin{cases} t_1+t_2=-1 \\ t_1*t_2=-6 \end{cases}\\ \begin{cases} t_1=-3 \\ t_2=2 \end{cases}

-3 не удовлетворяет ограничениям для t

3^x=2\\x=\log_3{2}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра