Решите уравнение: 2 + cosx = 2tgx/2

EvgenyMalkin71 EvgenyMalkin71    2   18.05.2019 03:30    2

Ответы
просвятленный просвятленный  11.06.2020 08:28

                Решение : /////////////////////////////////////////


Решите уравнение: 2 + cosx = 2tgx/2
ПОКАЗАТЬ ОТВЕТЫ
2116121056 2116121056  11.06.2020 08:28

Выразим косинус через тангенс половинного угла:

2-2tg(\frac{x}{2})+\frac{1-tg^2(\frac{x}{2})}{1+tg^2(\frac{x}{2})}=0\\(1-tg(\frac{x}{2}))(2+\frac{1+tg(\frac{x}{2})}{1+tg^2(\frac{x}{2})})=0\\(1-tg(\frac{x}{2}))(\frac{2tg^2(\frac{x}{2})+tg(\frac{x}{2})+3}{1+tg^2(\frac{x}{2})})=0

У второй скобки решений нет, т.к. дискриминант квадратного трехчлена в числителе D = -23 < 0, а у первой скобки:

tg(\frac{x}{2})=1\\\frac{x}{2}=\frac{\pi}{4}+\pi*n, n\in Z\\x=\frac{\pi}{2}+2\pi*n, n\in Z

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра