Решите системой уравнений: на двух полках 110 книг. если со второй полки переставить половину книг на первую, то на первой окажется в 4 раза больше книгю чем останется на второй. сколько книг на каждой полке?

Г0ошан4ик Г0ошан4ик    1   26.02.2019 12:00    4

Ответы
kostyabriakin kostyabriakin  06.06.2020 20:43
Пусть a  книг на I полке и b книг на II полке.

(a+b) книг - общее количество книг на двух полках или 110 книг

\frac{b}{2} книг - половина книг на II полке

(a+ \frac{b}{2} ) книг - такое количество книг станет после перестановки на I полке  или 4* \frac{b}{2}

Составим систему уравнений:

\left \{ {a+b=110} \atop {a+ \frac{b}{2}=4* \frac{b}{2} }} \right.

\left \{ {a+b=110} \atop {a+ \frac{b}{2}=2b }} \right.

\left \{ {a+b=110} \atop {a=1.5b }} \right.

\left \{ {1.5b+b=110} \atop {a=1.5b }} \right.

\left \{ {2.5b=110} \atop {a=1.5b }} \right.

\left \{ {b=44} \atop {a=1.5b }} \right.

\left \{ {b=44} \atop {a=1.5*44 }} \right.

\left \{ {b=44} \atop {a=66 }} \right.

ответ: 44 книги, 66 книг
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра