Решите, sin2x cosx = cos2x sinx cos5x cosx = cos4x 3+sin2x = 4sin^2x cos2x + cos^2x + sinx cos x = 0 3 cos 2x + sin^2x + 5 sinx cosx = 0

Hjk345 Hjk345    1   09.04.2019 15:12    3

Ответы
daniela07 daniela07  29.05.2020 00:27

sin2x cosx = cos2x sinx

2sinxcosxcosx=cos2xsinx    sinx=0   x=Пk

2cos^2x=cos2x

2cos^2x=2cos^2x-1   ∅

ответ x=Пk

cos5x cosx = cos4x

cos4x+cos6x=2cos4x

cos6x-cos4x=0

-2sin5xsinx=0

x=Пk

x=Пk/5

3+sin2x = 4sin^2x

3sin^2x+3cos^2x+2sinxcosx=4sin^2x

sin^2x-3cos^2x-2sinxcosx=0

sinx/cosx-3cosx/sinx-2=0

tgx-3/tgx-2=0

tg^2x-2tgx-3=0    tgx=3   tgx=-1

x=-П/4+Пk

x=arctg3+Пk

cos2x + cos^2x + sinx cos x = 0

2cos^2x-sin^2x+sinxcosx=0  |sinxcosx

2cosx/sinx-sinx/cosx+1=0

2ctgx-tgx+1=0

2/tgx-tgx+1=0

-tg^2x+tgx+2=0  tg^2x-tgx-2=0

tgx=(1+-3)/2 tgx=2  tgx=-1

x=-П/4+Пk

x=arctg2+Пk

3 cos 2x + sin^2x + 5 sinx cosx = 0

3cos^2x-2sin^2x+5sinxcosx=0

3cosx/sinx-2sinx/cosx+5=0

3/tgx-2tgx+5=0

2tgx-3/tgx-5=0

2tg^2x-5tgx-3=0

tgx=(5+-7)/4   tgx=3    tgx=-1/2

x=arctg3+Пk

x=-arctg1/2+Пk

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра