1) ✓x = n, n>=0
n²-n-6 = 0
Теорема Виета:
{n1+n2 = 1
{x1•x2 = -6
n1 = 3
n2 = -2
✓x = 3
x = 9
2)✓(x+2) = n, n>0
n - 2/n = 1
n²-n-2/n = 0
n²-n-2 = 0
Так как a-b+c = 0, то по этому свойству:
n1 = -1
n2 = -c/a = 2
√(x+2) = 2
x+2 = 4
x = 2
3)✓(x²-4x+20) = a, a >= 0
a²-20 = 3a-10
a²-3a-10 = 0
{a1+a2 = 3
{a1•a2 = -10
a1 = 5
a2 = -2
✓x²-4x+20 = 5
x²-4x+20 = 25
x²-4x-5 = 0
a-b+c = 0:
x1 = -1
x2 = -c/a = 5
1) ✓x = n, n>=0
n²-n-6 = 0
Теорема Виета:
{n1+n2 = 1
{x1•x2 = -6
n1 = 3
n2 = -2
✓x = 3
x = 9
2)✓(x+2) = n, n>0
n - 2/n = 1
n²-n-2/n = 0
n²-n-2 = 0
Так как a-b+c = 0, то по этому свойству:
n1 = -1
n2 = -c/a = 2
√(x+2) = 2
x+2 = 4
x = 2
3)✓(x²-4x+20) = a, a >= 0
a²-20 = 3a-10
a²-3a-10 = 0
Теорема Виета:
{a1+a2 = 3
{a1•a2 = -10
a1 = 5
a2 = -2
✓x²-4x+20 = 5
x²-4x+20 = 25
x²-4x-5 = 0
a-b+c = 0:
x1 = -1
x2 = -c/a = 5