Решите, , по тригонометрии (25 ) sqrt(cos^2(5x)-10cos5x+25) - sqrt((7cos5x-10)^2) = -8

altaeva81 altaeva81    3   28.04.2019 20:07    2

Ответы
danishvika danishvika  30.09.2020 14:47

x=±2π/15 + 2πn/5, где n - целое

Объяснение:

\sqrt{cos^25x-10cos5x+25} - \sqrt{(7cos5x-10)^2} = -8\\\sqrt{(cos5x-5)^2} - \sqrt{(7cos5x-10)^2} = -8\\|(cos5x-5| - |(7cos5x-10)| = -8

cos5x≤1, поэтому cos5x<5 и 7cos5x<10

Значит cos5x-5<0 и 7cos5x-10 <0 Получаем

 |cos5x-5|=5-cos5x и |7cos5x-10|=10-7cos5x

5-cos5x-(10-7cos5x)=-8

5-cos5x-10+7cos5x=-8

6cos5x-5=-8

6cos5x=-3

cos5x=-1/2

5x=±2π/3 + 2πn, где n - целое

x=±2π/15 + 2πn/5, где n - целое

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра