Решите ! нужно! ! докажите, что функция y=1/7*x^7 + sin3x является первообразной для функции y=x^6+3cos3x

Tennisboy Tennisboy    2   30.03.2019 11:00    6

Ответы
КатюшаМелихова КатюшаМелихова  27.05.2020 16:45

y=\frac{1}{7}x^7+sin (3x);\\ y'=(\frac{1}{7}x^7+sin (3x))'=(\frac{1}{7}x^7)'+(sin (3x))'=\\ \frac{1}{7}(x^7)'+cos (3x) *(3x)'=\frac{1}{7}*7x^{7-1}+cos (3x)*3=x^6+3cos 3x;\\ (\frac{1}{7}x^7+sin (3x))'=x^6+3cos 3x

значит функция y=1/7*x^7 + sin3x является первообразной для функции y=x^6+3cos3x

ПОКАЗАТЬ ОТВЕТЫ