Решите неравенство cosx> =1/2

Ptigran Ptigran    1   11.05.2019 09:03    9

Ответы
megachiglakov megachiglakov  09.06.2020 20:39

ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

Объяснение:

Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.

Вот так будет выглядеть Ваше условие на математическом языке:  

   \[cos x = \frac{1}{2}\]

Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:  

   \[cos x = a\]

 

   \[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

   \[cos x = \frac{1}{2}\\]

 

   \[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]

Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

   \[cos x = \frac{1}{2}\]

 

   \[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]

А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:  

   \[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]

ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра