Решите неравенство 2x^2+√2x^3> x

kattun kattun    3   03.09.2019 07:20    1

Ответы
Даша5015664 Даша5015664  06.10.2020 14:11
2x^2+ \sqrt{2}x^3\ \textgreater \ x\\
2x^2+ \sqrt{2}x^3-x\ \textgreater \ 0\\
x(2x+ \sqrt{2}x^2-1)\ \textgreater \ 0\\

В скобке получили квадратный трехчлен, разложим его:
ax^2+bx+c=a(x-x_1)(x-x_2)\\
2x+ \sqrt{2}x^2-1=0\\
\sqrt{2}x^2+2x-1=0\\
D=4-4\cdot \sqrt{2} \cdot(-1)=4+4 \sqrt{2} \\
x_1= \frac{-2+ \sqrt{4+4 \sqrt{2}} }{2 \sqrt{2} } =\frac{-2+ 2\sqrt{1+\sqrt{2}} }{2 \sqrt{2} } =\frac{-1+ \sqrt{1+\sqrt{2}} }{\sqrt{2} } \\
x_2= \frac{-2- \sqrt{4+4 \sqrt{2}} }{2 \sqrt{2} } =\frac{-2- 2\sqrt{1+\sqrt{2}} }{2 \sqrt{2} } =\frac{-1- \sqrt{1+\sqrt{2}} }{\sqrt{2} } \\
2x+ \sqrt{2}x^2-1=\sqrt{2}(x-\frac{-1+ \sqrt{1+\sqrt{2}} }{\sqrt{2} } )(x-\frac{-1- \sqrt{1+\sqrt{2}} }{\sqrt{2} } )\\


Подставим полученное разложение в наше исходное неравенство:
\sqrt{2}x(x-\frac{-1+ \sqrt{1+\sqrt{2}} }{\sqrt{2} } )(x-\frac{-1- \sqrt{1+\sqrt{2}} }{\sqrt{2} } )\ \textgreater \ 0\\
Воспользуемся методом интервалов, изображение прикрепила
Получаем ответ:
x\in (\frac{-1- \sqrt{1+\sqrt{2}}}{\sqrt{2} };0)\cup( \frac{-1+ \sqrt{1+\sqrt{2}}}{\sqrt{2} };+\infty)

Решите неравенство 2x^2+√2x^3> x
ПОКАЗАТЬ ОТВЕТЫ