Решите логарифмическое неравенство: log1/6 (10-x) + log1/6 (x-3) ≥ -1

vkovbasa99 vkovbasa99    3   12.08.2019 03:20    0

Ответы
albina24061980 albina24061980  04.10.2020 12:35
ОДЗ
{10-x>0⇒x<10
{x-3>0⇒x>3
x∈(3;10)
log(1/6)[(10-x)(x_3)]≥-1
Основание меньше 1,знак меняется
(10-x)(x-3)≤6
10x-30-x²+3x-6≤0
x²-13x+36≥0
x1+x2=13 U x1*x2=36
x1=4 U x2=9
x≤4 U x≥9
x∈(3;4] U [9;10)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра