Решите факториал и с объяснением, чтобы было понятно) а) n! +(n+1)! =n! (n+2) в) (n-1)! +n! +(n+1)! =(n+1)2(n-1)! (n+1)2 - в квадрате

ElizabetSnow ElizabetSnow    3   27.09.2019 19:50    0

Ответы
nazarpl6222 nazarpl6222  08.10.2020 23:16
A)надо доказать, что
n!+(n+1)!=n!(n+2)

n!=1•2•3•...•(n-1)•n
(n+1)!=1•2•3•...•(n-1)•n•(n+1), поэтому

n!+(n+1)!= n!+(n+1)n! =n!(1+n+1)=n!(n+2)

B)надо доказать, что
(n-1)!+n!+(n+1)!=(n+1)²(n-1)!

n!=(n-1)!n
(n+1)!=n!(n+1)=(n-1)!n(n+1)

(n-1)!+n!+(n+1)!= (n-1)!+(n-1)!n+(n-1)!n(n+1)=
=(n-1)!(1+n+n(n+1))=(n-1)!(1+n+n²+n)=
=(n-1)!(n²+2n+1)=(n-1)!(n+1)²=(n+1)²(n-1)!
ПОКАЗАТЬ ОТВЕТЫ
Даша6741 Даша6741  08.10.2020 23:16
A)n!+(n+1)!=n!(n+2)!
1*2*3*4*5*(n-5)(n-4)(n-3)(n-2)((n-1)*n+
n!*(n+1)=n!*(1+n+1)=n!*(n+2)

B)(n-1)!+n!+(n+1)!=(n+1)²*(n-1)!

(n-1)!+n!+(n+1)!=(n-1)!+(n-1)!*n+(n-1)!*(n(n+1))

=(n-1)!•(1+n+n(n+1))=(1+n+n²+n)•(n-1)!=

(n²+2n+1)•(n-1)!=(n+1)²(n-1)!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра