Решите . даны три натуральных числа. первое на столько же меньше второго, на сколько третье больше второго. квадрат второго числа на 36 больше произведения первого и третьего чисел. на сколько наибольшее из этих чисел больше наименьшего?
Решение Пусть первое число будет равно х, и пусть оно на у меньше второго числа, тогда второе число получается х+у, тогда третье число получается второе число плюс у, т.е х+у+у = х+2у. Так как квадрат второго числа на 36 больше произведения первого и третьего чисел, то составляем уравнение: (х+у)² - 36 = х * (х+2у) х²+2ху+у²-36=х²+2ху у²=36 у=6 или -6, но так как каждое следующее число больше предыдущего, то -6 не подходит. Значит у=6, т.е. первое число х, второе х+6, третье х+2*6=х+12. Таким образом наибольшее число больше чем наименьшее на 12, т.е. (х+12)-х=12. ответ: 12
Пусть первое число будет равно х, и пусть оно на у меньше второго числа, тогда второе число получается х+у, тогда третье число получается второе число плюс у, т.е х+у+у = х+2у. Так как квадрат второго числа на 36 больше произведения первого и третьего чисел, то составляем уравнение:
(х+у)² - 36 = х * (х+2у)
х²+2ху+у²-36=х²+2ху
у²=36
у=6 или -6, но так как каждое следующее число больше предыдущего, то -6 не подходит.
Значит у=6, т.е. первое число х, второе х+6, третье х+2*6=х+12.
Таким образом наибольшее число больше чем наименьшее на 12, т.е. (х+12)-х=12.
ответ: 12