∅
Объяснение:
3/x-3 – x+15/x^2-9 – 1/x =
3/x - 3 - x + 15/(x-3)(x+3) - 1/x | * x * (x+3) =
(3x * (x+3) - x* (15 + x) - (x + 3)(x - 3)) / x * (x - 3) * (x + 3) =
(3x^2 + 9x - 15x - x^2 - x^2 + 9)/ x * (x - 3) * (x + 3) =
ОДЗ:
x * (x - 3) * (x + 3) 0
x 0; x 3; x -3;
3x^2 + 9x - 15x - x^2 - x^2 + 9 =
x^2 - 6x + 9 = 0
x = 3
∅
Объяснение:
3/x-3 – x+15/x^2-9 – 1/x =
3/x - 3 - x + 15/(x-3)(x+3) - 1/x | * x * (x+3) =
(3x * (x+3) - x* (15 + x) - (x + 3)(x - 3)) / x * (x - 3) * (x + 3) =
(3x^2 + 9x - 15x - x^2 - x^2 + 9)/ x * (x - 3) * (x + 3) =
ОДЗ:
x * (x - 3) * (x + 3) 0
x 0; x 3; x -3;
3x^2 + 9x - 15x - x^2 - x^2 + 9 =
x^2 - 6x + 9 = 0
x = 3
∅