б) 4sinx*cosx*cos2x=1
по формуле sin2x=2sinxcosx(формула двойного угла)
получаем 2sin2xcos2x=1
sin4x=2sin2xcos2x
sin4x=1 это ответ
a)cos^2*x=1/2+sin^2*x
(cos^2x-sin^2x)=1/2cos2x=1/2(формула двойного угла)в) sinx*cosx(x+pi/3)+cosx*sin(x+pi/3)=0
cos(pi/6-2x)=0 (переход от суммы к произведению)
подробного решения нет, потому что все делается по формуле, в каждом уравнении 1 своя формула, почитай свой учебник, все элементарно,не ленись
формулы написал жирным шрифтом , посмотри везде они есть вот по ним только подставить свои значения и все!
б) 4sinx*cosx*cos2x=1
по формуле sin2x=2sinxcosx(формула двойного угла)
получаем 2sin2xcos2x=1
sin4x=2sin2xcos2x
sin4x=1 это ответ
a)cos^2*x=1/2+sin^2*x
(cos^2x-sin^2x)=1/2
cos2x=1/2(формула двойного угла)
в) sinx*cosx(x+pi/3)+cosx*sin(x+pi/3)=0
cos(pi/6-2x)=0 (переход от суммы к произведению)
подробного решения нет, потому что все делается по формуле, в каждом уравнении 1 своя формула, почитай свой учебник, все элементарно,не ленись
формулы написал жирным шрифтом , посмотри везде они есть вот по ним только подставить свои значения и все!