Данный вопрос предлагает решить систему уравнений:
у + 3х = 10
5х - 3у = 12
Чтобы решить эту систему, мы будем использовать метод подстановки. Сначала решим одно уравнение относительно одной переменной, а затем подставим полученное значение в другое уравнение.
1. Начнем с первого уравнения:
у + 3х = 10
Видим, что у нас есть уравнение, где y выражено относительно x. Чтобы упростить это уравнение, выразим y. Для этого вычтем 3х с обеих сторон:
у = 10 - 3х
2. Теперь мы имеем выражение для у в терминах x. Подставим это выражение во второе уравнение:
5х - 3(10 - 3х) = 12
Давайте разберем это уравнение по шагам:
5х - 3(10 - 3х) = 12
5х - 30 + 9х = 12 (распределение -3 на каждый член в скобках)
14х - 30 = 12 (суммирование 5х и 9х)
14х = 12 + 30 (суммирование -30 с обеих сторон)
14х = 42 (суммирование 12 и 30)
х = 42 / 14 (деление на 14)
х = 3
3. Теперь у нас есть значение x. Чтобы найти значение у, подставим x = 3 в выражение, которое мы получили из первого уравнения:
у = 10 - 3х
у = 10 - 3 * 3 (подставим х = 3)
у = 10 - 9
у = 1
Таким образом, решение системы уравнений будет х = 3 и у = 1. Это означает, что точка пересечения двух прямых, заданных данными уравнениями, имеет координаты (3, 1).
Всегда рекомендуется проверить решение, подставив значения x и y обратно в оба уравнения и убедившись, что они равны.
Мы надеемся, что эта подробная и пошаговая информация поможет вам лучше понять процесс решения системы уравнений. Если у вас остались какие-либо дополнительные вопросы, пожалуйста, не стесняйтесь задавать их.
{y=10-3x
{5x-3(10-3x)-12=0
{y=10-3x
{14x=42
{y =10-3x
{x=3
y=10-3*3=1
Объяснение:
у + 3х = 10
5х - 3у = 12
Чтобы решить эту систему, мы будем использовать метод подстановки. Сначала решим одно уравнение относительно одной переменной, а затем подставим полученное значение в другое уравнение.
1. Начнем с первого уравнения:
у + 3х = 10
Видим, что у нас есть уравнение, где y выражено относительно x. Чтобы упростить это уравнение, выразим y. Для этого вычтем 3х с обеих сторон:
у = 10 - 3х
2. Теперь мы имеем выражение для у в терминах x. Подставим это выражение во второе уравнение:
5х - 3(10 - 3х) = 12
Давайте разберем это уравнение по шагам:
5х - 3(10 - 3х) = 12
5х - 30 + 9х = 12 (распределение -3 на каждый член в скобках)
14х - 30 = 12 (суммирование 5х и 9х)
14х = 12 + 30 (суммирование -30 с обеих сторон)
14х = 42 (суммирование 12 и 30)
х = 42 / 14 (деление на 14)
х = 3
3. Теперь у нас есть значение x. Чтобы найти значение у, подставим x = 3 в выражение, которое мы получили из первого уравнения:
у = 10 - 3х
у = 10 - 3 * 3 (подставим х = 3)
у = 10 - 9
у = 1
Таким образом, решение системы уравнений будет х = 3 и у = 1. Это означает, что точка пересечения двух прямых, заданных данными уравнениями, имеет координаты (3, 1).
Всегда рекомендуется проверить решение, подставив значения x и y обратно в оба уравнения и убедившись, что они равны.
Мы надеемся, что эта подробная и пошаговая информация поможет вам лучше понять процесс решения системы уравнений. Если у вас остались какие-либо дополнительные вопросы, пожалуйста, не стесняйтесь задавать их.