. Решить систему неравенств:
а) 6х – 24 > 0,
-2х + 12 < 0;
б) 3(х-4) - 4(х+3) ≤ 0,
3х + 2(3х-2) > 5.

опшпищи опшпищи    3   08.05.2020 12:23    1

Ответы
nikitagiop nikitagiop  14.09.2020 07:56

a)х∈(6, +∞);

б)х∈(1, +∞).

Объяснение:

Решить систему неравенств:

а) 6х – 24 > 0

  -2х + 12 < 0

Первое неравенство:

6х – 24 > 0

6х>24

х>4

х∈(4, +∞) интервал решений первого неравенства.

Неравенство строгое, скобки круглые.

Второе неравенство:

-2х + 12 < 0

-2х<-12

х>6 знак меняется

х∈(6, +∞) интервал решений второго неравенства.

Неравенство строгое, скобки круглые.

Теперь нужно на числовой оси отметить оба интервала, чтобы найти пересечение, то есть, такое решение, которое подходит двум данным неравенствам.

Пересечение (решение системы неравенств) х∈(6, +∞)

б) 3(х-4) - 4(х+3) ≤ 0

   3х + 2(3х-2) > 5

Первое неравенство:

3(х-4) - 4(х+3) ≤ 0

3х-12-4х-12<=0

-x<=24

x>= -24 знак меняется

х∈[-24, +∞)  интервал решений первого неравенства.

Неравенство нестрогое, скобка квадратная.

Второе неравенство:

3х + 2(3х-2) > 5

3х+6х-4>5

9x>5+4

9x>9

x>1

х∈(1, +∞)  интервал решений второго неравенства.

Неравенство строгое, скобки круглые.

Теперь нужно на числовой оси отметить оба интервала, чтобы найти пересечение, то есть, такое решение, которое подходит двум данным неравенствам.

Пересечение (решение системы неравенств) х∈(1, +∞)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра