Для решения данной задачи, нам нужно представить выражение в виде произведения.
Исходное выражение: (a-b)-14c(b-a)
Давайте разберемся с ним пошагово:
1. Внутри скобок у нас есть разность (a-b). В данном случае, выражение в скобках уже минус, поэтому мы можем убрать скобки и поменять знаки у терминов внутри скобок:
(a-b) = -a + b
2. Теперь у нас получилось следующее выражение: -a + b - 14c(b-a)
3. Продолжим разбираться с этим выражением. У нас есть умножение между 14c и (b-a). Для упрощения, мы можем применить свойство коммутативности умножения и поменять порядок множителей:
14c(b-a) = 14c(-a + b)
4. Теперь мы можем раскрыть скобки, используя свойство дистрибутивности умножения:
14c(-a + b) = -14ac + 14bc
Итак, мы получили последнее выражение:
-a + b - 14ac + 14bc
Таким образом, мы представили исходное выражение в виде произведения:
Объяснение:
Исходное выражение: (a-b)-14c(b-a)
Давайте разберемся с ним пошагово:
1. Внутри скобок у нас есть разность (a-b). В данном случае, выражение в скобках уже минус, поэтому мы можем убрать скобки и поменять знаки у терминов внутри скобок:
(a-b) = -a + b
2. Теперь у нас получилось следующее выражение: -a + b - 14c(b-a)
3. Продолжим разбираться с этим выражением. У нас есть умножение между 14c и (b-a). Для упрощения, мы можем применить свойство коммутативности умножения и поменять порядок множителей:
14c(b-a) = 14c(-a + b)
4. Теперь мы можем раскрыть скобки, используя свойство дистрибутивности умножения:
14c(-a + b) = -14ac + 14bc
Итак, мы получили последнее выражение:
-a + b - 14ac + 14bc
Таким образом, мы представили исходное выражение в виде произведения:
(a-b)-14c(b-a) = -a + b - 14ac + 14bc