Решить,, нужно найти точку минимума функции: f(x)=x^3/3-(a+1)/2*x^2+ax-7

Sveto4ka2006 Sveto4ka2006    1   09.03.2019 01:00    11

Ответы
simkinaalinoschka simkinaalinoschka  24.05.2020 08:47

кубическая функция может иметь только локальный минимум. Потому что при х -> -\infty она уходит в -\infty

 

точки минимума и максимума соответствуют нулям производной

( x^3/3-(a+1)/2*x^2+ax-7 )' = x^2 - (a+1)*x + a

сумма степеней равна нулю, значит один корень = 1, второй = a

 

локальным минимумом является больший корень (кубическая функция возрастает от минус бесконечности до первого корня, потом убывает, потом снова возрастает до плюс бесконечности)

значит при a<1 локальный минимум f(x=1) = 1/3 - (a+1)/2 + a - 7 = a/2 - 7 \frac{1}{6}

при а>1 локальный минимум f(x=a) = a^3/3-(a+1)/2*a^2+a^2 - 7 = (1/3 - 1/2) a^3 + (-1/2+1) a^2 - 7 = - a^3 / 6 + a^2 / 2 - 7

при a = 1 имеем точку перегиба и никакого минимума

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра