Решить неравенство. Максимально подробно


Решить неравенство. Максимально подробно

Shurt Shurt    1   12.07.2021 22:23    0

Ответы
arinahovhannisyan1 arinahovhannisyan1  12.07.2021 22:30

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

Объяснение:

находим ОДЗ  x ∉ [ -1, -1/3 ] отсюда>>

область допустимых значений: x ∈ (-∞,-1)  ∪ (-1/3, +∞)

Для а>1 выражение log a(x) ≥ log a(y)  равно x≥y

4x^2 + 1 ≥ 3x^2 + 4x + 1

4x^2 ≥ 3x^2 + 4x

4x^2 - 3x^2 - 4x ≥ 0

x^2  - 4x ≥ 0

x ( x - 4 ) ≥ 0

возможны 2 случая когда произведение a*b будет ≥ 0.

(либо два отрицательных)

(либо два положительных)

Проверяем

x≥0     <=>  x≥0  <=>    x ∈ [4 , +∞ )

x-4≥0          x≥4

x ≤ 0  <=>  x≤0  <=>    x ∈ ( - ∞, 0 ]

x - 4 ≤0       x≤4

находим объединение для x ∈ ( - ∞, 0 ] и  x ∈ [4 , +∞ ), получаем множество решений

МНОЖЕСТВО РЕШЕНИЙ   x∈ (- ∞,0] ∪ [4, +∞) ,

ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ  x ∈ (-∞,-1)  ∪ (-1/3, +∞)

нахождение пересечения множеств решений  и области допустимых значений

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

ПОКАЗАТЬ ОТВЕТЫ
ratmir10 ratmir10  11.08.2021 23:09

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

Объяснение:

находим ОДЗ  x ∉ [ -1, -1/3 ] отсюда>>

область допустимых значений: x ∈ (-∞,-1)  ∪ (-1/3, +∞)

Для а>1 выражение log a(x) ≥ log a(y)  равно x≥y

4x^2 + 1 ≥ 3x^2 + 4x + 1

4x^2 ≥ 3x^2 + 4x

4x^2 - 3x^2 - 4x ≥ 0

x^2  - 4x ≥ 0

x ( x - 4 ) ≥ 0

возможны 2 случая когда произведение a*b будет ≥ 0.

(либо два отрицательных)

(либо два положительных)

Проверяем

x≥0     <=>  x≥0  <=>    x ∈ [4 , +∞ )

x-4≥0          x≥4

x ≤ 0  <=>  x≤0  <=>    x ∈ ( - ∞, 0 ]

x - 4 ≤0       x≤4

находим объединение для x ∈ ( - ∞, 0 ] и  x ∈ [4 , +∞ ), получаем множество решений

МНОЖЕСТВО РЕШЕНИЙ   x∈ (- ∞,0] ∪ [4, +∞) ,

ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ  x ∈ (-∞,-1)  ∪ (-1/3, +∞)

нахождение пересечения множеств решений  и области допустимых значений

x ∈ (-∞, -1)   ∪ (-1/3, 0] ∪ [4, +∞)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра