решить.
1)sin2x=cos^2x
2)2sin^2(x)+3sin(x)*cos(x)-2cos^2(x)=0

kalinkamalinka369 kalinkamalinka369    2   17.05.2020 15:13    1

Ответы
zhovnovich zhovnovich  14.10.2020 21:14

1)Sin(2x)=cos(2x)

tg(2x)=1

2x=acrtg 1

2x= \frac{ \pi }{4}  + \pi  n n∈Z

x= \frac{ \pi }{8} +  \frac{ \pi n}{2}

2)Разделим равенство на cos²x ≠ 0;

2sin²x + 3sinxcosx - 2cos²x = 0;

2sin²x/cos²x + 3sinxcosx/cos²x - 2cos²x/cos²x = 0;

2tg²x + 3tgx - 2 = 0;

Выполним замену tgx = t:

2t² + 3t - 2 = 0;

Определим дискриминант квадратного уравнения:

D = b² - 4ac = ( 3)² - 4 * 2 *( - 2) = 9 + 16 = 25;

t1 = ( - b - √D) / 2a = ( - 3 - √25) / 2 * 2 = ( -3 - 5) / 4 = - 8 / 4  = - 2;

t2 = ( - b + √D) / 2a = ( - 3 + √25) / 2 * 2 = ( -3 + 5) / 4 = 2 / 4  = 1/2;

4. Eсли t1 = - 2:

tgx = - 2;

х = arctg( - 2) + πn, n ∈ Z;

х = - arctg(2) + πn, n ∈ Z;

Eсли t2 = 1/2:

tgx = 1/2;

х2 = arctg(1/2) + πm, m ∈ Z;

ответ: х = - arctg(2) + πn, n ∈ Z, х2 = arctg(1/2) + πm, m ∈ Z.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра