Ребят
Решить уравнение:
2sin^2x-5sinxcosx+5cos^2x=2

ovezgeldyevaemi ovezgeldyevaemi    2   07.02.2021 05:42    3

Ответы
KetrinMid KetrinMid  07.02.2021 06:00

Обратившись к основному тригонометрическому тождеству, получим:

2sin^2(x) - 5sin(x)cos(x) + 5cos^2(x) = sin^2(x) + cos^2(x);

sin^2(x) - 5sin(x)cos(x) + 4cos^(x) = 0.

Разделим полученное уравнение на cos^2(x):

tg^2(x) - 5tg(x) + 4 = 0.

Произведем замену переменных t = tg(t):

t^2 - 5t + 4 = 0.

Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются

по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.

t12 = (5 +- 3) / 2;

t1 = 1; t2 = 4.

tg(x) = 1;

x1 = π/4 +- π * n.

x2 = arctg(4) +- π * n.

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра