Разность двух натуральных чисел относится к их произведению как 1 : 24,а сумма этих чисел относится к их разности как 5 : 1. найти эти числа

ииоииири ииоииири    1   13.03.2019 16:20    5

Ответы
DarthRevan8 DarthRevan8  25.05.2020 04:54
Пусть есть 2 натуральных числа, x и y, тогда,следуя условию, получаем следующее:
1) 
 \frac{x-y}{xy}= \frac{1}{24}

2)
 \frac{x+y}{x-y} = \frac{5}{1} \Rightarrow \frac{x+y}{x-y} = 5

Составим систему из 2 уравнений с 2 неизвестными и решим ее:
 \left \{ {{ \frac{x-y}{xy}= \frac{1}{24} } \atop {\frac{x+y}{x-y} = 5}} \right. \Rightarrow \left \{ {{24(x-y)=xy} \atop {x+y=5(x-y)}} \right. \Rightarrow \left \{ {{24x-24y=xy} \atop {x+y=5x-5y}} \right. \Rightarrow \left \{ {24x-24y=xy} \atop {4x-6y=0}} \right. \\\Rightarrow \left \{ {{24x-24y=xy} \atop {x= \frac{6y}{4} }} \right. \Rightarrow \left \{ {{36y-24y=xy} \atop {x=\frac{6y}{4}}} \right. \Rightarrow \left \{ {{12y=xy} \atop {x=\frac{6y}{4}}} \right. \Rightarrow \left
 \{ {{x=12} \atop {12= \frac{6y}{4} }} \right. \Rightarrow \left \{ {{x=12} \atop {48=6y}} \right. \Rightarrow \left \{ {{x=12} \atop {y=8}} \right.

ответ: x=12, y=8 
ПОКАЗАТЬ ОТВЕТЫ