Объяснение:
1) 8a - 12b = 4(2a - 3b)
2) 3a - ab = a(3 - b)
3) 6ax + 6ay = 6a(x + y)
4) 4a^2 + 8ac = 4a(a + 2c)
5) a^5 + a^2 = a^2*(a^3 + 1) = a^2*(a+1)(a^2 - a + 1)
6) 12x^2*y - 3xy = 3xy(4x - 1)
7) 21a^2*b + 28ab^2 = 7ab(3a + 4b)
8) -3x^6 + 12x^12 = 3x^6*(4x^6 - 1) = 3x^6*(2x^3 - 1)(2x^3 + 1)
Тут ещё можно разложить как сумму и разность кубов, но тогда появятся корни кубические из 2, так что лучше не надо.
Второе задание.
1) a(m+n) - b(m+n) = (m+n)(a-b)
2) x(2a-5b) + y(2a-5b) = (2a-5b)(x+y)
3) 2m(a-b) + 3n(b-a) = 2m(a-b) - 3n(a-b) = (a-b)(2m-3n)
4) 5x(b-c) - (c-b) = 5x(b-c) + (b-c) = (b-c)(5x+1)
1) 8·a - 12·b = 4·(2·a - 3·b)
2) 3·a - a·b = a·(3 - b)
3) 6·a·x + 6·a·y = 6·a·(x + y)
4) 4·a² + 8·a·c = 4·a·(a + 2·c)
5) a⁵ + a² = a²·(a³ + 1) = a²·(a+1)·(a² - a + 1)
6) 12·x²·y - 3·x·y = 3·x·y·(4·x - 1)
7) 21·a²·b + 28·a·b² = 7·a·b·(3·a + 4·b)
1) a·(m+n) - b·(m+n) = (a-b)·(m+n)
2) x·(2·a-5·b) + y·(2·a-5·b) = (x+y)·(2·a-5·b)
3) 2·m·(a-b) + 3·n·(b-a) = 2·m·(a-b) - 3·n·(a-b) = (2·m-3·n)·(a-b)
4) 5·x·(b-c) - (c-b) = 5·x·(b-c) + (b-c) = (5·x+1)·(b-c)
2)a(3-b)
3)6a(x+y)
4)4a(a+2c)
5)a^(a(3cт)+1)
6)3x(4x(2уст)-y)
7)7a(3a(2bcт)+4b^)
8)-3x(6ст)(1-4x(6cт))
1)(m+n)(a+b)
2)(2a-5b)(x-y)
3)2m(a-b)+3n(-a+b)=2m(a-b)-3n(a-b)=(a-b)(2m-3n)
4)5x(b-c)-(-b-c)=5x(b-c)+(b-c)=(b-c)(5x-1)
Объяснение:
1) 8a - 12b = 4(2a - 3b)
2) 3a - ab = a(3 - b)
3) 6ax + 6ay = 6a(x + y)
4) 4a^2 + 8ac = 4a(a + 2c)
5) a^5 + a^2 = a^2*(a^3 + 1) = a^2*(a+1)(a^2 - a + 1)
6) 12x^2*y - 3xy = 3xy(4x - 1)
7) 21a^2*b + 28ab^2 = 7ab(3a + 4b)
8) -3x^6 + 12x^12 = 3x^6*(4x^6 - 1) = 3x^6*(2x^3 - 1)(2x^3 + 1)
Тут ещё можно разложить как сумму и разность кубов, но тогда появятся корни кубические из 2, так что лучше не надо.
Второе задание.
1) a(m+n) - b(m+n) = (m+n)(a-b)
2) x(2a-5b) + y(2a-5b) = (2a-5b)(x+y)
3) 2m(a-b) + 3n(b-a) = 2m(a-b) - 3n(a-b) = (a-b)(2m-3n)
4) 5x(b-c) - (c-b) = 5x(b-c) + (b-c) = (b-c)(5x+1)
1) 8·a - 12·b = 4·(2·a - 3·b)
2) 3·a - a·b = a·(3 - b)
3) 6·a·x + 6·a·y = 6·a·(x + y)
4) 4·a² + 8·a·c = 4·a·(a + 2·c)
5) a⁵ + a² = a²·(a³ + 1) = a²·(a+1)·(a² - a + 1)
6) 12·x²·y - 3·x·y = 3·x·y·(4·x - 1)
7) 21·a²·b + 28·a·b² = 7·a·b·(3·a + 4·b)
1) a·(m+n) - b·(m+n) = (a-b)·(m+n)
2) x·(2·a-5·b) + y·(2·a-5·b) = (x+y)·(2·a-5·b)
3) 2·m·(a-b) + 3·n·(b-a) = 2·m·(a-b) - 3·n·(a-b) = (2·m-3·n)·(a-b)
4) 5·x·(b-c) - (c-b) = 5·x·(b-c) + (b-c) = (5·x+1)·(b-c)