Расстояние между двумя пристанями по реке равно 80 км катёр от одной пристани до другой, сделал стоянку на 1 час 20 минут и вернулся обратно. всё путешествие заняло 10 часов 20 минут. найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 18 км/ч
Используя условие, составим уравнение:
(80/18+x) + (80/18-x) = 9, где х - скорость течения реки в км/ч
Приводим все слагаемы к общему знаменателю, получаем:
(80*(18-х)+80*(18+х)-9*(18+х)(18-х))/(18+x)(18-x)=0
(1440-80x+1440+80x-2916+x^2)/(18-x)(18+x)=0
(x^2-36)/(18-x)(18+x)=0 (Избавляемся от знаменателя через ОДЗ-Область допустимых значений, где х неравно 18, х неравно -18)
Получаем:
x^2-36=0
(x-6)(x+6)=0
x1=6 ; x2=-6 - не удовлетворяет условию, т.к. скорость не может принимать отрицательное значение.
ответ: х(скорость течения реки) равно 6 км/x