Рассматриваются все квадратные уравнения вида с целыми коэффициентами, у которых . сколько таких уравнений имеют целые корни? щедрая награда,давайте, поторопитесь)

Ilays1488 Ilays1488    3   20.07.2019 22:40    0

Ответы
Кокс383939484 Кокс383939484  03.10.2020 09:15
Пусть x₁ и x₂ – целые корни трехчлена x²+px+q.
 p+q=  218.

По теореме Виета
x₁+x₂=-p,
x₁x₂=q

или
p= - (x₁+x₂), q=x₁x₂

р+q=-(x₁+x₂)+x₁x₂=-x₁-x₂+x₁x₂+1-1= (x₁–1)( x₂–1)–1

(x₁–1)(x₂–1)-1=218
(x₁-1)(x₂-1)=219

Так как
 219=1·219=(-1)·(-219)

других множителей нет, 219 - простое число

Итак, возможны два варианта
 
1)
х₁-1 =1    и    х₂ -1 = 219
  х₁=2         и    х₂ =220,
Уравнение
х² -222х + 440=0
имеет два целых корня и р+q=-222+440=218
 
2)
х₁-1 =-1       и      х₂ -1 = -219
    х₁=0           и     х₂ = -218,

Уравнение
х²+218х =0
имеет два целых корня и р+q=218+0=218

ответ два уравнения.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра