Для решения данной задачи рассмотрим сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара. Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).
Диаметр основания конуса равен 1*2=2 см.
Значит треугольник образованный образующими и диаметром конуса - правильный.
Радиус вписанной в правильный треугольник окружности равен:
Для решения данной задачи рассмотрим сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара. Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).
Диаметр основания конуса равен 1*2=2 см.
Значит треугольник образованный образующими и диаметром конуса - правильный.
Радиус вписанной в правильный треугольник окружности равен:
r=a/(1√2)
r=6/(1√2)=√2
Объяснение: