1. Сначала надо спростить левую часть уравнения — используем формулу сокращённого умножения ( а - в )( а + в ) = а² - в² :
( 5х + 2 ) - ( 25х² - 9 ) = 73
2. Потом открываем скобки, поскольку перед 2- ми стоит минус, то знаки меняются на противоположные :
5х + 2 - 25х² + 9 = 73
3. Сводим подобные слогаемые и переносимости всё в левую часть:
- 25х² + 5х + 11 - 73 = 0
- 25х² + 5х - 62 = 0
4. Умножим обе части уравнения на -1:
- 25х² + 5х - 62 = 0 | × (-1)
25х² - 5х + 62 = 0
5. Получилось квадратное уравнение, решаем через дискриминант:
D = (-5)² - 4 × 25 × 62 = 25 - 6200 = -6175
6. Поскольку -6175 < 0, D < 0, тогда уравнение не имеет корней.
ответ : корней нет
1. Сначала надо спростить левую часть уравнения — используем формулу сокращённого умножения ( а - в )( а + в ) = а² - в² :
( 5х + 2 ) - ( 25х² - 9 ) = 73
2. Потом открываем скобки, поскольку перед 2- ми стоит минус, то знаки меняются на противоположные :
5х + 2 - 25х² + 9 = 73
3. Сводим подобные слогаемые и переносимости всё в левую часть:
- 25х² + 5х + 11 - 73 = 0
- 25х² + 5х - 62 = 0
4. Умножим обе части уравнения на -1:
- 25х² + 5х - 62 = 0 | × (-1)
25х² - 5х + 62 = 0
5. Получилось квадратное уравнение, решаем через дискриминант:
D = (-5)² - 4 × 25 × 62 = 25 - 6200 = -6175
6. Поскольку -6175 < 0, D < 0, тогда уравнение не имеет корней.
ответ : корней нет