В решении.
Объяснение:
При каких значениях b и c вершина параболы y = 3x² + bx + c находится в точке В(-1; 2)?
1) По формуле х₀ (значение х вершины параболы) = -b/2a.
х₀ известно (координата х точки В) = -1.
Подставить в формулу и вычислить b:
х₀ = -b/2a
-1 = -b/6
-b = -6
b = 6.
2) Найти свободный член с:
y = 3x² + bx + c
у₀ известно (координата у точки В) = 2, b вычислено = 6.
Подставить в уравнение все известные значения и вычислить с:
2 = 3 * (-1)² + 6 * (-1) + с
2 = 3 - 6 + с
2 = -3 + с
2 + 3 = с
с = 5.
При b = 6 и с = 5 вершина параболы находится в точке В(-1; 2).
В решении.
Объяснение:
При каких значениях b и c вершина параболы y = 3x² + bx + c находится в точке В(-1; 2)?
1) По формуле х₀ (значение х вершины параболы) = -b/2a.
х₀ известно (координата х точки В) = -1.
Подставить в формулу и вычислить b:
х₀ = -b/2a
-1 = -b/6
-b = -6
b = 6.
2) Найти свободный член с:
y = 3x² + bx + c
у₀ известно (координата у точки В) = 2, b вычислено = 6.
Подставить в уравнение все известные значения и вычислить с:
2 = 3 * (-1)² + 6 * (-1) + с
2 = 3 - 6 + с
2 = -3 + с
2 + 3 = с
с = 5.
При b = 6 и с = 5 вершина параболы находится в точке В(-1; 2).