При каком отрицательном значении параметра p один из корнец квадратного уравнения x^2 +px +36=0 на 4 меньше другого?

nasstya05 nasstya05    1   25.06.2019 12:10    1

Ответы
samsunguser samsunguser  20.07.2020 17:12
По теореме Виетта имеем:
x1 + x2 = -p
x1 * x2 = 36

Используем условие: один на 4 меньше другого.
Здесь нумерация корней не имеет значения, поэтому запишем так:
x1 - x2 = 4

Получаем систему:
x1 + x2 = -p
x1 * x2 = 36
x1 = x2 + 4

Из последнего уравнения подставим вместо х1 во второе уравнение х2 + 4
(х2 + 4)*х2 = 36
х2 ^2 + 4 x2 - 36 = 0
D/4 = 4 + 36 = 40
x2 = -2 +- sqrt(40) = -2 +- 2sqrt(10)
находим х1: x1 = x2 + 4 = -2 +-2sqrt(10) + 4 = 2 +- 2 sqrt(10)

Получаем две пары корней:
х1 = 2 + 2 sqrt(10)
x2 = -2 + 2sqrt(10)

x1 = 2 - 2sqrt(10)
x2 = -2 - 2sqrt(10)

Теперь подставляем в первое уравнение: х1 + х2 = -p
Для первой пары:  x1 + x2 = 2sqrt(10)
Для второй: x1 + x2 = -4sqrt(10)

-p = 2sqrt(10) или -p = -4sqrt(10)
p = -2sqrt(10)        p = 4sqrt(10)

ответ -2sqrt(10)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра