При каком наименьшем целом n число является целым?

ilona125 ilona125    2   23.05.2019 07:00    4

Ответы
kseniya1276 kseniya1276  18.06.2020 23:04
Если данное отношение является целым числом при целом n то выделяя целую часть числа
\frac{4n-6}{4n+5}=\frac{4n+5-11}{4n+5}=1-\frac{11}{4n+5}
откуда число \frac{11}{4n+5} тоже должно быть целым, а значит число 4n+5  должно быть делителем числа 11, т.е. либо 1, либо -1, либо 11, либо -11 (11 - простое число, кроме себя и 1 ни на какое любое другое число нацело не делится)

из соотвествуюих равенств находим
4n+5=1
4n=1-5
4n=-4
n=-4:4
n=-1

4n+5=-1
4n=-1-5
4n=-6
n=-6:4 - нецелое

4n+5=-11
4n=-11-5
4n=-16
n=-16:4
n=-4

4n+5=11
4n=11-5
4n=6
n=6:4- нецелое
Из найденных значений n наименьшее целое -4
отвте: -4
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра