При каких значениях параметра b многочлен x^3+3x^2-bx+6 делиться нацело на многочлен x+2 (теорема безу )

nusunusretp0ale8 nusunusretp0ale8    2   31.08.2019 08:00    0

Ответы
0996784 0996784  06.10.2020 06:36
Если (x+2) является делителем первого многочлена, то этот многочлен = =P(x)*(x+2), а значит x=-2 является его корнем, подставляем:
(-2)^3 + 3*(-2)^2 - b*(-2) + 6 = 0;
-8 + 12 + 2b + 6 = 0;
10+2b = 0;
b = -10/2 = -5.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра