При каких значениях а, уравнение имеет только целые корни. аналитически.

hava27 hava27    2   26.07.2019 11:20    0

Ответы
1) При a = -1/2 уравнение имеет вид
(1/2)х-(5/2)=0
х=5 - целый корень.

2) При а ≠ (-1/2) решаем квадратное уравнение
(2a+1)x^2 -аx + a-2 = 0
D = (-а)² - 4·(2а+1)(а-2) =  - 7a²+12а+8

Если D≥0 уравнение имеет корни

- 7a²+12а+8 ≥0

-7(a-a₁)(a-a₂) ≥0    или  (a-a₁)(a-a₂) ≤0

при  a₁≤a≤a₂ ,
где  а₁=(12-√368)/14=(6-√92)/7≈-0,51; а₂=(12+√368)/14=(6+√92)/7≈2,22  уравнение имеет корни

x₁ = (а - √(- 7a²+12а+8)) / (4a+2)
x₂ =  (а +√(- 7a²+12а+8)) / (4a+2)

По условию оба эти корня должны быть целыми, то есть:
дискриминант не может быть числом иррациональным.

1) D = (- 7a²+12а+8) должен быть квадратом.
Если  построить график  u=-7а²+12а+8 на (-0,51;2,22), то u ∈ (0; 10,5)- множество значений дискриминанта.
На интервале (0; 10,5) точные квадраты:
1; 4; 9

Решаем уравнения
D=1      или    - 7a²+12а+8=1    
D=4      или    - 7a²+12а+8=4
D=9      или    - 7a²+12а+8=9

Может быть можно проверить и дробно-рациональные квадраты?
D=1,21
D=1,44

и т.д.
 
При а = 2 дискриминант будет точным квадратом  D = 4,
уравнение принимает вид
5х²-2х=0
x₁=0 ; х₂=0,4
как видим, второй корень - рациональный.
ответ. при а=-1/2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра