По формулам приведения заменим cost на sin(π/2-t).
sint + cost=sint+sin(π/2-t)=2*sin(t+π/2-t)/2 *cos(t-π/2+t)/2=2*sinπ/2 *cos(t-π/4)=2*cos(t-π/4)
2*cos(t-π/4) + 5*cos(t-π/4)=2*cos(t-π/4)+5*cos(t-π/4)=7*cos(t-π/4)
2)cos38=cos(90-52)=sin52
sin38-sin52=2sin45cos7
(sin38-sin52) /√2*sin7=2sin45cos7 /√2sin7 =2*(√2/2)*tg7/√2=tg7
Решение:sin t + cost + 5*cos(t+ пи/4)=cos(pi/2+t)+cost+5*cos(t+ пи/4)==2cospi/4cos(t+ пи/4)+5*cos(t+ пи/4)=cos(t+ пи/4)*(5+sqrt(2)).
По формулам приведения заменим cost на sin(π/2-t).
sint + cost=sint+sin(π/2-t)=2*sin(t+π/2-t)/2 *cos(t-π/2+t)/2=2*sinπ/2 *cos(t-π/4)=2*cos(t-π/4)
2*cos(t-π/4) + 5*cos(t-π/4)=2*cos(t-π/4)+5*cos(t-π/4)=7*cos(t-π/4)
2)cos38=cos(90-52)=sin52
sin38-sin52=2sin45cos7
(sin38-sin52) /√2*sin7=2sin45cos7 /√2sin7 =2*(√2/2)*tg7/√2=tg7
Решение:
sin t + cost + 5*cos(t+ пи/4)=cos(pi/2+t)+cost+5*cos(t+ пи/4)=
=2cospi/4cos(t+ пи/4)+5*cos(t+ пи/4)=cos(t+ пи/4)*(5+sqrt(2)).