Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду признательна! √ означает, что все выражение под корнем √x^2-5x-23 + √2x^2-10x-32 = 5

юляФ1 юляФ1    3   16.07.2019 11:50    1

Ответы
pavlushkaaa pavlushkaaa  21.09.2020 10:25
ОДЗ :    х² - 5х - 23 ≥ 0
             2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так  просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение

Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод  замены переменной

х²-5х-23=t    ⇒   x²-5x=t+23
x²-5x-16=t+23-16=t+7

Уравнение примет вид
√t + √2·(t+7)=5

или

√2·(t+7) = 5 - √t

Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
(  (5 - √t)≥0    ⇒√ t ≤ 5    ⇒  t ≤  25)

2·( t + 7) = 25 - 10 √t + t

или

10·√t = 25 + t - 2t - 14

10·√t = 11 - t

Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0    t ≤ 11
Получаем уравнение

100 t = 121 - 22 t + t², при этом    t ≤ 11

t² - 122 t + 121 = 0

D=122²-4·121=14884 - 484 = 14400=120

t₁=(122-120)/2= 1     или    t₂= (122+120)/2 = 121  не удовлетворяет                                                          условию ( t ≤ 11)

возвращаемся к переменной х:

х² - 5х - 23 = 1         

х² - 5х - 24 = 0         
D=25+96=121=11²             
x₁=(5-11)/2=-3                      
х₂=(5+11)/2=8                      

Проверка
х = - 3         √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно    1+4=5

х = 8            √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно    1+4=5

ответ. х₁=-3    х₂=8

Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду приз
ПОКАЗАТЬ ОТВЕТЫ
VovkaGamer228 VovkaGamer228  21.09.2020 10:25
Другие вопросы по теме Алгебра