Смотри. Здесь использую формулы сокращённого умножения 1)5(a-b)²-(a+b)(b-a) =Смотри, 5+7 = 12, 7+5 = 12, значить когда ты имеешь право менять местачт числа при ДОДАВАНИИ.. значит: = 5(a-b)²-(b+a)(b-a) = теперь в конце есть формула a²-b² только в разложеном виде. собираем её = 5(a-b)²-a²+b²= далее раскладываем первую формулу (a-b)²= a²-2ab+b² = 5(a²-2ab+b²)-a²+b²= умножаю 5 на всё что есть в скобках = 5a²-10ab+5b²-a²+b² = 4a²-10ab+6b² 2)a(a-b)²-(b-a)³= раскрываю скобки по формулах = a(a²-2ab+b²)-(b³-3b²a+3ba²-a³) = умножаю первые скобки на а, а вторые раскрываю и меняю знак на противоположный a³-2a²b+b²a-b³+3b²a-3ba²+a³=2a³-5a²b+4b²a-b³
1)5(a-b)²-(a+b)(b-a) =Смотри, 5+7 = 12, 7+5 = 12, значить когда ты имеешь право менять местачт числа при ДОДАВАНИИ..
значит:
= 5(a-b)²-(b+a)(b-a) = теперь в конце есть формула a²-b² только в разложеном виде. собираем её
= 5(a-b)²-a²+b²= далее раскладываем первую формулу (a-b)²= a²-2ab+b²
= 5(a²-2ab+b²)-a²+b²= умножаю 5 на всё что есть в скобках
= 5a²-10ab+5b²-a²+b² = 4a²-10ab+6b²
2)a(a-b)²-(b-a)³= раскрываю скобки по формулах
= a(a²-2ab+b²)-(b³-3b²a+3ba²-a³) = умножаю первые скобки на а, а вторые раскрываю и меняю знак на противоположный
a³-2a²b+b²a-b³+3b²a-3ba²+a³=2a³-5a²b+4b²a-b³
1.
правая часть упрощается по формуле сокращенного умножения [Разность квадратов], чтобы её применить необходимо вынести -1 из скобки:
Раскроем скобки, используя формулу [Квадрат суммы двух выражений]:
2.
в силу того, что 3 - это нечётное число, то можно вынести из скобок -1:
Было использованы формулы сокращенного умножения.
1. Квадрат разности двух выражений.
2. Вынесение общего множителя.