Нужно, 1. исследуйте на чётность и нечётность функцию y=х^2 - cos2х . 2. сравните sin(-20градусов ) и sin(-85 градусов) нужно все подробно, придирчивая учительница, заранее

BcezHaNKa BcezHaNKa    3   01.10.2019 21:40    13

Ответы
polli54 polli54  09.10.2020 10:25

1. Итак, нам нужно понять какая эта функция! Для этого  Вспомним, что функция f(x )-называется четной( нечетной), если для любого x∈D(f) и выполняется равенство  f(x)=f(-x).

График четной функции симметричен относительно оси .

График нечетной функции симметричен относительно начала координат

 Наш пример : y=x²-cos2x

Функция определенна при x∈(-∞;∞) , то есть f(-x)=(-x)²-cos2(-x)=-x²-cos2x=-(x²-cos2x)-функция является четной, т.к cosx-четная функция

2.Нам нужно сравнить два значения sin(-20°) V sin(-85)°, где V- знак сравнения ( птичкой называют)  

Итак, sin(-20°)=sin(-10°)+sin30°≈0,1736+0,5≈-0,34

sin(-85°)=sin(-5°)-sin(90°)≈0,0872+1≈0,9999=грубо 1

sin(-20°) > sin(-85°). Есть еще более простой смотри поскольку числа не четные, пусть в место sin(-20°) будет sin(-30°)=-0,5 и sin(-85°) бусть будет sin(-90)=-1 и так -0,5>-1

ответ: 1) y=x²-cos2x- функция четная ; 2)sin(-20°) > sin(-85°)

Надеюсь, твой педагог не такая уш придирчивая. Удачи тебе!

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра