Необходимо выполнить эти два задания. Заранее благодарю за


Необходимо выполнить эти два задания. Заранее благодарю за

DenisPalashyk DenisPalashyk    3   15.06.2020 15:55    5

Ответы
MCKiri4PrO MCKiri4PrO  15.10.2020 14:04

Наибольшая прибыль = 7 денежных единиц

Объяснение:

Пусть x - количество произведенной продукции П1, а y - количество произведенной продукции П2. Тогда цель задачи максимизировать значение (1 \cdot x + 2 \cdot y) при условии ограничений на сырье и того, что нам надо произвести хоть что-то: 1 \cdot x + 3 \cdot y \leq 9, 2 \cdot x + 1 \cdot y \leq 8, x\geq 0, y\geq 0.

Эти четыре неравенства задают заштрихованный под прямыми y = 3 - \frac{x}{3}, y=8-2x четырехугольник в первом квадранте.

Значение максимизируемого выражения x+2y есть линии уровня z=x+2y, а так как градиент функции z(x,y) равный grad z = {1;2} направлен в сторону первого квадранта, то значения z будут тем больше, чем дальше мы продвинем линию уровня в первый квадрант. С учетом ограничений наибольшее значение изготовленной продукции придется на пересечение прямых, которые задают четырехугольник: y = 3 - \frac{x}{3}, y=8-2x. Точка пересечения (3;2). Значит, наибольшая прибыль, которую можно получить 3+2*2=7.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра