Необходимо найти среднее арифметическое корней уравнения. (вероятно решается через замену, но какую – не ясно)


Необходимо найти среднее арифметическое корней уравнения. (вероятно решается через замену, но какую

Igorevna29 Igorevna29    3   03.08.2021 14:20    1

Ответы
hfdgddcju hfdgddcju  03.08.2021 14:30

x^2-5x-2=a  

x^2+5x-2=b

Тогда

 b-a=10x  

 x=(b-a)/10

 Подставляя  

 (b-a)/(5a) + (3*(b-a))/(10b) = -5/8    

 (b-a)*(1/(5a)+3/(10b)) = -5/8

 (b-a)*(2b+3a)/(10ab) + 5/8 = 0

 8(b-a)(2b+3a)+50ab = 0  

 8(8b^2+ab-3a^2)+50ab = 0

 64b^2+8ab-24a^2+50ab = 0

 64b^2+58ab-24a^2=0

 2*(8b-3a)(4a+b)=0

 1) 8b=3a

2) b=-4a

1) 8x^2+40x-16=3(x^2-5x-2)  

2) x^2+5x-2=-4*(x^2-5x-2)  

1) 5x^2+55x-10=0  

2) 5x^2-15x-10=0  

1) x^2+11x-2=0

2) x^2+3x-2=0

 По теореме Виета

 x1+x2+x3+x4/4 = (-11-3)/4 = -14/4 = -7/2

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра