Не понимаю. докажите, что при любых n выражение n^4+2n^3+3n^2+2n делится на 8 без остатка.

KatonAnton KatonAnton    2   05.10.2019 12:50    3

Ответы
Wanemid Wanemid  09.10.2020 21:40
Решение во вложении. Поставил значение целого честного и нечётного числа. Все зн-я n/8 без остатка.
Не понимаю. докажите, что при любых n выражение n^4+2n^3+3n^2+2n делится на 8 без остатка.
ПОКАЗАТЬ ОТВЕТЫ
karinarei2017 karinarei2017  09.10.2020 21:40

1. Прежде всего, разобьем это выражение на множители:

n^4+2n^3+3n^2+2n=n*(n^3+2n^2+3*n+2)

Разделив столбиком многочлен n^3+2n^2+3*n+2 на (n+1), получаем (n^2+n+2). Т.е. исходный многочлен может быть представлен в следующем виде:

n^4+2n^3+3n^2+2n=n*(n+1)*(n^2+n+2)

2. Теперь рассмотрим 2 случая:

а). Пусть n - четное число, т.е. делится на 2 без остатка, тогда

n делится на 2 без остатка;

(n+1), будучи числом нечетным, не делится на 2 без остатка;

Теперь рассмотрим n^2+n+2:

n - четное, значит n^2 - тоже четное, и n^2+n - тоже четное, т.е. делится на 2 без остатка. Т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка => (n^2+n+2)/2=((n^2+n)/2) + 2/2=((n^2+n)/2)+1.

Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.

б). Пусть n - нечетное, т.е. не делится на 2 без остатка, тогда

n не делится на 2 без остатка;

(n+1), будучи числом четным, делится на 2 без остатка;

n - нечетное, значит n^2 - тоже нечетное, а n^2+n - уже четное, т.к. к нечетному n^2 прибавляем нечетное n. И аналогично, т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка.

Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.

ПОКАЗАТЬ ОТВЕТЫ