Найти все значения параметра m , при котором уравнение x²-4mx+1-2m+4m²=0 имеет различные корни, и каждый из них больше 1

ksuholina ksuholina    3   27.09.2019 08:00    0

Ответы
panda4918 panda4918  08.10.2020 22:14

Найти все значения параметра m , при котором уравнение   x²-4mx+1-2m+4m²=0  имеет различные корни, и каждый из них больше 1.                                                                                                     решение:                                                                                               { (2m)² - (1-2m+4m²) >0 ; 2m > 1 ; 1²- 4m*1+1-2m+4m² > 0. ⇔                        { m >1/2 ; 2m > 1 ;  m ∈ ( - ∞; -1/2) ∪ (1; ∞) .  ⇔ m ∈  (1; ∞) .

ответ :  m ∈  (1; ∞) .                                                                                                                                                                              

ПОКАЗАТЬ ОТВЕТЫ
kostaKOSTAkosta kostaKOSTAkosta  08.10.2020 22:14
X² - 4mx + 1 - 2m + 4m² = 0
Квадратное уравнение имеет два различных действительных корня, когда его дискриминант положителен.
D/4 = 4m² - 1 + 2m - 4m² = 2m - 1
2m - 1 > 0 ⇔ m > ½
Найдем корни уравнения
[x₁ = 2m + √(2m - 1)
[x₂ = 2m - √(2m - 1)
Из условия, каждый корень больше единицы. Решим соответствующие неравенства.
1). 2m + √(2m - 1) > 1
√(2m - 1) > 1 - 2m
1.1) 1 - 2m > 0 ⇔ m < 1/2
2m - 1 > 1 - 4m + 4m²
4m² - 6m + 2 < 0
D/4 = 9 - 8 = 1
m₁ = (3 + 1)/4 = 1
m₂ = (3 - 1)/4 = 1/2
4(m - 1)(m - 1/2) < 0
m∈(1/2 ; 1)
Пересечение ∅
1.2) 1 - 2m < 0 ⇔ m > 1/2
m∈R
Пересечение m > 1/2
2). 2m - √(2m - 1) > 1
√(2m - 1) < 2m - 1
2.1) 2m - 1 > 0 ⇔ m > 1/2
2m - 1 < 4m² - 4m + 1
4m² - 6m + 2 > 0
4(m - 1)(m - 1/2) > 0
m∈(-∞;1/2)∪(1;∞)
Пересечение m > 1
2.2) 2m - 1 < 0 ⇒ ∅

Из всего этого можно утвердить, что m > 1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра