Найти все значения параметра a, при которых данное уравнение разрешимо, и решить его при найденных a: эту можно решить возведением в квадрат. но будут нестандартные методы решения.
Производная первой функции меньше производной второй функции, обе они монотонны и пересекаются в точке t = 0 ⇒ больше нигде пересечений нет.
Итак, полученное уравнение имеет лишь один корень t = 0. Таким образом, x² + a² = 0. Но, так как в левой части равенства у нас выражение принимает всегда неотрицательные значения, x² = a² = 0, то есть x = a = 0.
Производная первой функции меньше производной второй функции, обе они монотонны и пересекаются в точке t = 0 ⇒ больше нигде пересечений нет.
Итак, полученное уравнение имеет лишь один корень t = 0. Таким образом, x² + a² = 0. Но, так как в левой части равенства у нас выражение принимает всегда неотрицательные значения, x² = a² = 0, то есть x = a = 0.
ответ: 0.